Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
2.
Sci Rep ; 12(1): 3463, 2022 03 02.
Article in English | MEDLINE | ID: covidwho-1721583

ABSTRACT

Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold promise as tools for early illness detection. We gathered daily questionnaire data and physiological data using a consumer wearable (Oura Ring) from 63,153 participants, of whom 704 self-reported possible COVID-19 disease. We selected 73 of these 704 participants with reliable confirmation of COVID-19 by PCR testing and high-quality physiological data for algorithm training to identify onset of COVID-19 using machine learning classification. The algorithm identified COVID-19 an average of 2.75 days before participants sought diagnostic testing with a sensitivity of 82% and specificity of 63%. The receiving operating characteristic (ROC) area under the curve (AUC) was 0.819 (95% CI [0.809, 0.830]). Including continuous temperature yielded an AUC 4.9% higher than without this feature. For further validation, we obtained SARS CoV-2 antibody in a subset of participants and identified 10 additional participants who self-reported COVID-19 disease with antibody confirmation. The algorithm had an overall ROC AUC of 0.819 (95% CI [0.809, 0.830]), with a sensitivity of 90% and specificity of 80% in these additional participants. Finally, we observed substantial variation in accuracy based on age and biological sex. Findings highlight the importance of including temperature assessment, using continuous physiological features for alignment, and including diverse populations in algorithm development to optimize accuracy in COVID-19 detection from wearables.


Subject(s)
Body Temperature , COVID-19/diagnosis , Wearable Electronic Devices , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , COVID-19/virology , Female , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification , Young Adult
3.
J Med Internet Res ; 22(12): e25442, 2020 12 23.
Article in English | MEDLINE | ID: covidwho-1011362

ABSTRACT

BACKGROUND: COVID-19, which is accompanied by acute respiratory distress, multiple organ failure, and death, has spread worldwide much faster than previously thought. However, at present, it has limited treatments. OBJECTIVE: To overcome this issue, we developed an artificial intelligence (AI) model of COVID-19, named EDRnet (ensemble learning model based on deep neural network and random forest models), to predict in-hospital mortality using a routine blood sample at the time of hospital admission. METHODS: We selected 28 blood biomarkers and used the age and gender information of patients as model inputs. To improve the mortality prediction, we adopted an ensemble approach combining deep neural network and random forest models. We trained our model with a database of blood samples from 361 COVID-19 patients in Wuhan, China, and applied it to 106 COVID-19 patients in three Korean medical institutions. RESULTS: In the testing data sets, EDRnet provided high sensitivity (100%), specificity (91%), and accuracy (92%). To extend the number of patient data points, we developed a web application (BeatCOVID19) where anyone can access the model to predict mortality and can register his or her own blood laboratory results. CONCLUSIONS: Our new AI model, EDRnet, accurately predicts the mortality rate for COVID-19. It is publicly available and aims to help health care providers fight COVID-19 and improve patients' outcomes.


Subject(s)
COVID-19/mortality , Adult , Aged , Artificial Intelligence , China , Female , Hospitalization , Humans , Male , Middle Aged , Neural Networks, Computer , Republic of Korea , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL